From AureoWiki
Jump to navigation Jump to search
PangenomeCOLN315NCTC8325NewmanUSA300_FPR375704-0298108BA0217611819-97685071193ECT-R 2ED133ED98HO 5096 0412JH1JH9JKD6008JKD6159JSNZLGA251M013MRSA252MSHR1132MSSA476MW2Mu3Mu50RF122ST398T0131TCH60TW20USA300_TCH1516VC40

Summary[edit | edit source]

  • pan ID?: SAUPAN005022000
  • symbol?:
  • synonym:
  • description?: peptidoglycan hydrolase

      descriptions from strain specific annotations:

    • peptidoglycan hydrolase
    • amidase
    • truncated amidase
    • truncated phage amidase
    • amidase (fragment)
    • pseudogene
    • SH3 domain-containing protein
    • SH3 domain protein
    • SH3 type 3 domain-containing protein
    • Truncated amidase, phage associated
  • strand?: -
  • coordinates?: 5195189..5195485
  • synteny block?: BlockID0039030
  • occurrence?: in 44% of 34 strains

sdp : prophage-encoded truncated SH3-domain protein [1]

Truncated SH3-domain protein (SDP) is a component of the immune evasion module found on hlb-converting prophage that is a major contributor to human pathogenic potential. However, unlike other immune evasion module proteins, the role and activities of SDP remain unclear. SH3b domains bind to proline-rich or hydrophobic domain proteins such as fibronectin or bacterial cell wall components and are often found linked to amidase domains in endolysins, explaining SDP's frequent misannotation as a peptidoglycan hydrolase (it isn't - SDP lacks any amidase-like domain). Supporting its location in an immune evasion cluster, short polymers from trimers to dodecamers are immunostimulatory, although monomers, dimers and larger polymers are not. They may sequester released peptidoglycan fragments, preventing immunostimulation. Alternatively, SH3b mRNA binds to the global regulatory small RNA RsaA which may modulate its activity. At this point, not enough is known about SDP to characterize it as an immune evasion protein despite its location in the immune evasion module.

Orthologs[edit | edit source]

    COL:
    N315:
    NCTC8325:
    Newman:
    USA300_FPR3757:
    04-02981:
    SA2981_1903 (lytA)
    08BA02176:
    11819-97:
    6850:
    RSAU_000618
    71193:
    ECT-R 2:
    ECTR2_1816
    ED133:
    ED98:
    HO 5096 0412:
    SAEMRSA15_18600
    JH1:
    SaurJH1_2036
    JH9:
    SaurJH9_2001
    JKD6008:
    SAA6008_01954
    JKD6159:
    JSNZ:
    LGA251:
    M013:
    MRSA252:
    SAR2037
    MSHR1132:
    MSSA476:
    Mu3:
    Mu50:
    MW2:
    RF122:
    ST398:
    T0131:
    SAT0131_02077
    TCH60:
    HMPREF0772_11196
    TW20:
    SATW20_19370
    USA300_TCH1516:
    USA300HOU_1948
    VC40:

Genome Viewer[edit | edit source]

NCTC8325
Newman
USA300_FPR3757

Alignments[edit | edit source]

  • alignment of orthologues:

  1. P Moreillon, P A Majcherczyk
    Proinflammatory activity of cell-wall constituents from gram-positive bacteria.
    Scand J Infect Dis: 2003, 35(9);632-41
    [PubMed:14620147] [WorldCat.org] [DOI] (P p)
    Bénédicte Fournier, Dana J Philpott
    Recognition of Staphylococcus aureus by the innate immune system.
    Clin Microbiol Rev: 2005, 18(3);521-40
    [PubMed:16020688] [WorldCat.org] [DOI] (P p)
    Paweł Mitkowski, Elżbieta Jagielska, Elżbieta Nowak, Janusz M Bujnicki, Filip Stefaniak, Dorota Niedziałek, Matthias Bochtler, Izabela Sabała
    Structural bases of peptidoglycan recognition by lysostaphin SH3b domain.
    Sci Rep: 2019, 9(1);5965
    [PubMed:30979923] [WorldCat.org] [DOI] (I e)
    Luz S Gonzalez-Delgado, Hannah Walters-Morgan, Bartłomiej Salamaga, Angus J Robertson, Andrea M Hounslow, Elżbieta Jagielska, Izabela Sabała, Mike P Williamson, Andrew L Lovering, Stéphane Mesnage
    Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b.
    Nat Chem Biol: 2020, 16(1);24-30
    [PubMed:31686030] [WorldCat.org] [DOI] (I p)
    Stuart W McKellar, Ivayla Ivanova, Pedro Arede, Rachel L Zapf, Noémie Mercier, Liang-Cui Chu, Daniel G Mediati, Amy C Pickering, Paul Briaud, Robert G Foster, Grzegorz Kudla, J Ross Fitzgerald, Isabelle Caldelari, Ronan K Carroll, Jai J Tree, Sander Granneman
    RNase III CLASH in MRSA uncovers sRNA regulatory networks coupling metabolism to toxin expression.
    Nat Commun: 2022, 13(1);3560
    [PubMed:35732654] [WorldCat.org] [DOI] (I e)
    Chrispin Chaguza, Joshua T Smith, Spencer A Bruce, Robert Gibson, Isabella W Martin, Cheryl P Andam
    Prophage-encoded immune evasion factors are critical for Staphylococcus aureus host infection, switching, and adaptation.
    Cell Genom: 2022, 2(11);
    [PubMed:36465278] [WorldCat.org] [DOI] (I p)